已知:关于x的方程2x2+kx-1=0.(1)求证:方程有两个不相等的实数根;(2)若方程的一个根是-1,求另一个根及k值.
问题描述:
已知:关于x的方程2x2+kx-1=0.
(1)求证:方程有两个不相等的实数根;
(2)若方程的一个根是-1,求另一个根及k值.
答
证明:(1)∵a=2,b=k,c=-1∴△=k2-4×2×(-1)=k2+8,∵无论k取何值,k2≥0,∴k2+8>0,即△>0,∴方程2x2+kx-1=0有两个不相等的实数根.(2)把x=-1代入原方程得,2-k-1=0∴k=1∴原方程化为2x2+x-1=0,解得:...
答案解析:若方程有两个不相等的实数根,则应有△=b2-4ac>0,故计算方程的根的判别式即可证明方程根的情况,第二小题可以直接代入x=-1,求得k的值后,解方程即可求得另一个根.
考试点:解一元二次方程-因式分解法;根与系数的关系.
知识点:本题是对根的判别式与根与系数关系的综合考查,一元二次方程根的情况与判别式△的关系:
(1)△>0⇔方程有两个不相等的实数根;
(2)△=0⇔方程有两个相等的实数根;
(3)△<0⇔方程没有实数根.
并且本题考查了一元二次方程的解的定义,已知方程的一个根求方程的另一根与未知系数是常见的题型.