已知方程2x²+3x-1=0的两根为x1、x2,求1/x1+1/x2
问题描述:
已知方程2x²+3x-1=0的两根为x1、x2,求1/x1+1/x2
答
同意一楼的答案
答
令y=1/x, 带入并整理:y²-3y-2=0
而1/x1+1/x2 = y1+ y2
由根与系数关系得:
y1+ y2 = - b/a = 3/1=3
故1/x1+1/x2 = 3
答
∵方程2x²+3x-1=0的两根为x1、x2
∴由根与系数关系得
x1+x2=-3/2 ①
x1x2=-1/2 ②
∵1/x1+1/x2=(x1+x2)/ x1x2 ③
∴将①②代入③得
1/x1+1/x2=(x1+x2)/ x1x2 =(-3/2 )/(-1/2 )=3
答
=x1x2/x1+x2=-3/2÷(-1)=3/2