如图,在△ABC中,∠C=90°,D是BC边上一点,DE⊥AB于E,∠ADC=45°,若DE:AE=1:5,BE=3,求△ABD的面积.
问题描述:
如图,在△ABC中,∠C=90°,D是BC边上一点,DE⊥AB于E,∠ADC=45°,若DE:AE=1:5,BE=3,求△ABD的面积.
答
在△AED中,∵DE⊥AB于E,
又∵DE:AE=1;5,
∴设DE=x,则AE=5x,
由勾股定理,AD2=AE2+ED2=(5x)2+x2=26x2,
∴AD=
x.
26
在△ADC中,∵∠C=90°,∠ADC=45°,
∴∠DAC=45°.
由勾股定理,AC2+DC2=AD2=26x2,
∴AC=DC=
x.
13
在Rt△BED中,∵ED=x,BE=3,
由勾股定BD2=ED2+BE2=x2+32=x2+9,
∴BD=
.
x2+9
在Rt△BED和Rt△BCA中,
∵∠B是公共角,
∠BED=∠BCA=90°,
∴△BED∽△BCA,而AB=3+5x.
∴
=ED AC
.BD BA
即
=x
x
13
.
x2+9
3+5x
解关于x的方程3+5x=
•
13
,
x2+9
两边平方得:(3+5x)2=13•(x2+9),
化简得:2x2+5x-18=0,
即(x-1)(2x+9)=0,
∴x1=2 x2=-
.9 2
∵x=ED>0,
∴x=ED=2,AE=5x=10.
∴AB=AE+BE=10+3=13.
∴S△ABD=
ED•AB=1 2
×2×13=13.1 2