已知函数f(x)=ax+lnx 求在[1.e]的最大值
问题描述:
已知函数f(x)=ax+lnx 求在[1.e]的最大值
答
分四种情况讨论,1,a大于等于0 ,函数在区间上单增, 最大值为f(e)
2,,a小于0时
分三种情况讨论
1:a大于等于-1小于0,在区间上单增 最大值为f(e)
2:a小于等于-e时,在区间上单减,最大值为f(1)
3:a大于-e且小于-1时,在区间上先减后增,最大值为f(e)与
f(1)二者之间的较大者
答
f′(x)=a+1/x=(ax+1)/x,令f′(x)=0,则x=-1/a
(1)当a≧0时,
当x<-1/a,f′(x)﹤0,f(x)为减函数;当x≧-1/a,f′(x)>0,f(x)为增函数,故x=-1/a,f(x)为极小值.
而f(1)=a,则f(e)=ae+1为极大值,
(2)当a<0时
x<-1/a,f′(x)>0,f(x)为增函数;当x≧-1/a,f′(x)<0,f(x)为减函数,则,极大值为f(-1/a)=-1-ln(-a)