已知tanx,tany是方程x平方+Px+Q=0的两个根求sin(x+y)平方+

问题描述:

已知tanx,tany是方程x平方+Px+Q=0的两个根求sin(x+y)平方+
sinP(x+y)cos(x+y)+Qcos(x+Y)平方的值

因为tanx、tany是方程x²+Px+Q=0的两根,则:
tanx+tany=-P
tanxtany=Q
所以,tan(x+y)=[tanx+tany]/[1-tanxtany]=(-P)/(1-Q)
sin²(x+y)+Psin(x+y)cos(x+y)+Qcos²(x+y) 【利用分母1=sin²w+cos²w】
=[sin²(x+y)+Psin(x+y)cos(x+y)+cos²(x+y)]/[sin²(x+y)+cos²(x+y)] 【分子分母同
=[tan²(x+y)+Ptan(x+y)+Q]/[1+tan²(x+y)] 除以cos²(x+y)】
=[P²-P²(1-Q)+Q(1-Q)²]/[P²+(1-Q)²]
=Q