已知等差数列{an}满足a2=0,a6+a8=-10,求数列an/(2^(n-1))的值

问题描述:

已知等差数列{an}满足a2=0,a6+a8=-10,求数列an/(2^(n-1))的值

设数列{an/(2^(n-1)}的前n项和为Sn
所以 Sn=a1+a2/2+a3/4+...+an/2^(n-1)①
n=1时,Sn=S1=1
①式*1/2得,Sn/2=a1/2+a2/4+a3/8+...+an/2^n
所以n>1时,Sn/2=a1+(a2-a1)/2+...+(an-an-1)/2^(n-1)-an/2^n (注:an-1中n-1为下标)
=1-(1/2+1/4+...+1/2^(n-1)-(2-n)/2^n)=1-(1-1/2^(n-1))-(2-n)/2^n
所以Sn=n/2^(n-1)