如图,已知抛物线y=-1/2x平方+x+4交x轴的正半轴与点A,交y轴于点B(1)求A.B两点的坐标,并求直线AB的解析式、(2)设P(x,y)(x>0)是直线y=x上的一点,Q是OP的中点(O是原点),以PQ对角线作正方形PEQF,若正方形PEQF于直线AB有公共点,求x的取值范围(3)在(2)的条件下,记正方形PEQF与△OAB公共部分的面积为S,求S关于x的函数解析式,并探究S的最大值.ps:麻烦详细一点 第三步就行 (1)(2)不用了
如图,已知抛物线y=-1/2x平方+x+4交x轴的正半轴与点A,交y轴于点B
(1)求A.B两点的坐标,并求直线AB的解析式、
(2)设P(x,y)(x>0)是直线y=x上的一点,Q是OP的中点(O是原点),以PQ对角线作正方形PEQF,若正方形PEQF于直线AB有公共点,求x的取值范围
(3)在(2)的条件下,记正方形PEQF与△OAB公共部分的面积为S,求S关于x的函数解析式,并探究S的最大值.
ps:麻烦详细一点 第三步就行 (1)(2)不用了
(3)当PQ中点横坐标3x/4>=2,即4>=x>=8/3时,
S=2(2-x/2)^2;
当2=(-7/4)(x-16/7)^2+8/7.
当x=16/7时S取最大值8/7.
1.A(4,0),B(0,4)
2.
抛物线交y=x于M(2√2,2√2)
P(x,y),Q(x/2,y/2)则E(x,y/2),F(x/2,y)
Q在抛物线内且P在抛物线外,0<x/2≤2√2 且x≥2√2
2√2≤x≤4√2。
3.
只有当Q在△OAB内才有公共部分,
y=x与AB直线y=-x+4交点为N(2,2)
即0<x/2≤2,0<x≤4,
(1)当Q在△OAB内,E、F在△OAB外时:
AB交QF、QE于C(x/2,-x/2+4)、D(4-x/2,x/2)
公共部分即RT△QCD,
其面积为S=QC*QD/2=|-x/2+4-x/2|*|4-x/2-x/2|/2
S=|4-x|*|4-x|/2=(1/2)(4-x)^2 ;
(2)当Q、E、F在△OAB内,P在△OAB外时:
AB交PF、PE于C(4-x,x)、D(x,-x+4)
公共部分面积即正方形PEQF面积-RT△PCD面积
讨论x的范围……
(3)当Q、E、F、P在△OAB内时:
公共部分即正方形PEQF面积,
其面积为S=QE^2=|x-x/2|^2=(x-x/2)^2
讨论x的范围……
已知抛物线y=-1/2x²+x+4 交x轴的正半轴与点A,交y轴于点B a=-1/2<0,则抛物线开口朝下Δ=b²-4ac=1+4×4/2=9>0 抛物线图象与x轴交于两点:([-b-√Δ]/2a,0)和([-b+√Δ]/2a,0); 即A点(2,0)和C点(-4...
y=-x+4,2