在△ABC中,求证a²-b²/c²=sin(A-B)/sinC
问题描述:
在△ABC中,求证a²-b²/c²=sin(A-B)/sinC
答
根据正弦定理:
(a+b/c)(a-b/c)
=(sinA+sinB/sinC)(sinA-sinB/sinC)
分别处理,用和化为积公式:
sinA+sinB/sinC=2sin(A+B/2)cos(A-B/2)/sin(A+B)
=2sin(A+B/2)cos(A-B/2)/2sin(A+B/2)cos(A+B/2)
=cos(A-B/2)/cos(A+B/2)
同理:a-b/c=sin(A-B/2)/sin(A+B/2)
所以原式=sin(A-B/2)cos(A-B/2)/sin(A+B/2)cos(A+B/2)
=sin(A-B)/sin(A+B)=sin(A-B)/sinC
希望对您有所帮助