已知函数f(x)=2sinxcosx+2根号3cos平方x-根号3+2 (1)当x属于(0,#/2)时若函数g(x)=f(x)+m有零点求m范围
问题描述:
已知函数f(x)=2sinxcosx+2根号3cos平方x-根号3+2 (1)当x属于(0,#/2)时若函数g(x)=f(x)+m有零点求m范围
是+2根号3cos平方x,不是+2根号3cos平方2x
(2)若f(x0)=2/5,x0属于(#/4,#/2),求sin(2x0)的值
答
f(x)=2sinxcosx+2√3(cosx)^2-√3+2
=sin2x+√3*cos2x+2
=2sin(2x+π/3)+2
因为x∈(0,π/2)
所以2x+π/3∈(π/3,4π/3)
所以2sin(4π/3)+2<f(x)≤2sin(π/2)+2
即2-√3<f(x)≤4
因为函数g(x)=f(x)+m有零点
所以m的取值范围是(-4,√3-2]
如果不懂,请Hi我,祝学习愉快!
补充:第二问
f(x)=2sin(2x+π/3)+2
f(x0)=2sin(2x0+π/3)+2=2/5
所以sin(2x0+π/3)=-4/5
x0∈(π/4,π/2)
2x0+π/3∈(5π/6,4π/3)(结合它的正弦是负的,那么它是第三象限角)
故cos(2x0+π/3)=-√[1-(-4/5)^2]=-3/5
所以sin(2x0)=sin[(2x0+π/3)-π/3]=sin(2x0+π/3)cos(π/3)-cos(2x0+π/3)sin(π/3)=(-4/5)*(1/2)-(-3/5)*(√3/2)=(3√3-4)/10