已知a²+a=0,求a³+2a²+2004已知a²+a-1=0,求a³+2a²+2004
问题描述:
已知a²+a=0,求a³+2a²+2004
已知a²+a-1=0,求a³+2a²+2004
答
a²+a-1=0,求a³+2a²+2004
a²+a = 1
a³+2a²+2004=a(a²+a)+a²+2004=a+a²+2004=2005
答
嗯, 楼上正解。
答
a²+a=0,a(a+1)=0 a=0或者-1
当a=0
a³+2a²+2004
=2004
当a= -1
a³+2a²+2004
=-1+2 +2004
=2005
答
a²+a=0,
a(a+1)=0
a=0或a+1=0,a=-1
a=0时
a³+2a²+2004=0+0+2004=2004
a=-1时
a³+2a²+2004=(-1)³+2(-1)²+2004=-1+2+2004=2005