Xn+1-Xn=(-1/2)^n n∈N+ 且X1=1 求Xn

问题描述:

Xn+1-Xn=(-1/2)^n n∈N+ 且X1=1 求Xn

X(n+1)-X(n)=(-1/2)^n
X(n)-X(n-1)=(-1/2)^(n-1)
X(n-1)-X(n-2)=(-1/2)^(n-2)
········ X2-X1=-1/2
注意到右边是等比数列,将n个等式相加后得 X(n+1)-X1=[1-(-1/2)^n]*(-1/3)
X(n+1)=1+[1-(-1/2)^n]*(-1/3)=2/3+(1/3)*(-1/2)^n
所以 Xn=2/3+( 1/3) *(-1/2)^(n-1)