数学微积分证明题.设函数f在(0,+∞)上满足方程 f(2x)=f(x),且limf(x)=A 〔lim下面为x→+∞〕,证明 f(x)≡A,x∈(0,+∞).
问题描述:
数学微积分证明题.
设函数f在(0,+∞)上满足方程 f(2x)=f(x),且limf(x)=A 〔lim下面为x→+∞〕,证明 f(x)≡A,x∈(0,+∞).
答
假设存在x0使得f(x0)=B≠A,则存在数列{xn}={2^n*x0},使得xn->+∞,而lim(n->∞)f(xn)≠A,这和lim(x->+∞)f(x)=A矛盾.