已知x>1求函数y=(2x^2-x+1)/x-1的最小值是在x属于(1,正无穷大)

问题描述:

已知x>1求函数y=(2x^2-x+1)/x-1的最小值
是在x属于(1,正无穷大)

y=(2x²-x-1+2)/(x-1)
=[(x-1)(2x+1)+2]/(x-1)
=(x-1)(2x+1)/(x-1)+2/(x-1)
=2x+1+2/(x-1)
=2x-2+2/(x-1)+3
x>1则x-1>0
所以y=2(x-1)+2/(x-1)+3>=2√[2(x-1)*2/(x-1)]+3=4+3=7
所以最小值=7

(2x+1)(x-1) +2 2 2
y= ----------------------- = 2x+1 + -------------- = 2(x-1) + -------------- +1
x-1 x-1 x-1
2
≥ 2*√(2(x-1)*--------) +1 =5
x-1
当且仅当
2
2(x-1) = ---------- 时等号成立
x-1
即 x=2时,y有最小值5
【中学数理化解答团】