已知:如图,A、F、C、D四点在一直线上,AF=CD,AB∥DE,且AB=DE.求证:(1)△ABC≌△DEF;(2)BC∥EF.
问题描述:
已知:如图,A、F、C、D四点在一直线上,AF=CD,AB∥DE,且AB=DE.
求证:(1)△ABC≌△DEF;
(2)BC∥EF.
答
证明:(1)∵AF=CD,
∴AF+FC=CD+FC即AC=DF.
∵AB∥DE,
∴∠A=∠D.
∵AB=DE,
∴在△ABC和△DEF中
.
AB=DE ∠A=∠D AC=DF
∴△ABC≌△DEF(SAS).
(2)∵△ABC≌△DEF(已证),
∴∠ACB=∠DFE.
∴EF∥BC.
答案解析:(1)要证明△ABC≌△DEF,可以通过已知利用SAS来进行判定,
(2)由(1)可以得到对应角相等,然后利用内错角相等即可证明两直线平行.
考试点:全等三角形的判定与性质.
知识点:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.
注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.