如图,四棱锥P-ABCD的底面为平行四边形,PD⊥平面ABCD,M为PC中点.(1)求证:AP∥平面MBD;(2)若AD⊥PB,求证:BD⊥平面PAD.

问题描述:

如图,四棱锥P-ABCD的底面为平行四边形,PD⊥平面ABCD,M为PC中点.

(1)求证:AP∥平面MBD;
(2)若AD⊥PB,求证:BD⊥平面PAD.

(1)设AC∩BD=H,连接EH,
∵H为平行四边形ABCD对角线的交点,∴H为AC中点,
又∵M为PC中点,∴MH为△PAC中位线,
可得MH∥PA,
MH⊂平面MBD,PA⊄平面MBD,
所以PA∥平面MBD.
(2)∵PD⊥平面ABCD,AD⊂平面ABCD,
∴PD⊥AD,
又∵AD⊥PB,PD∩PB=D,
∴AD⊥平面PDB,结合BD⊂平面PDB,得AD⊥BD
∵PD⊥BD,且PD、AD是平面PAD内的相交直线
∴BD⊥平面PAD.
答案解析:(1)设AC∩BD=H,连接EH,由平行四边形的性质结合题意证出MH为△PAC中位线,从而得到MH∥PA,利用线面平行的判定定理,即可证出PA∥平面MBD.
(2)由线面垂直的定义证出PD⊥AD,结合AD⊥PB得到AD⊥平面PDB,得AD⊥BD,再根据PD⊥BD且PD、AD是平面PAD内的相交直线,可得BD⊥平面PAD.
考试点:直线与平面垂直的判定;直线与平面平行的判定.
知识点:本题在特殊的四棱锥中证明线面平行和线面垂直,着重考查了空间的平行、垂直位置关系的判定与证明的知识,属于中档题.