圆O1,圆O2相交于A ,B两点,AC是圆O2的切线,交圆O1于点C,连结CB并延长交圆O2于点F,D是圆O2上的点,且∠DAB=∠C,连结DB并延长交圆O1于点E(1)求证:DA是圆O1的切线(2)求证:AC平方:AD平方=BC:BD(3)若BF=4,CA=3根号5,求DE的长

问题描述:

圆O1,圆O2相交于A ,B两点,AC是圆O2的切线,交圆O1于点C,连结CB并延长交圆O2于点F,D是圆O2上的点,且
∠DAB=∠C,连结DB并延长交圆O1于点E
(1)求证:DA是圆O1的切线
(2)求证:AC平方:AD平方=BC:BD
(3)若BF=4,CA=3根号5,求DE的长

分析:(1)本题可过A作圆O的直径,然后证这条直径与AD垂直即可.可根据圆周角定理和已知的∠DAB=∠C来求解.(2)本题的关键是证CF=DE,如图,如果证CF=DE,就必须证明O′Q=OP,就要证出∠OO′Q=∠O′OP,可通过证∠O′JR...