如图,已知△ABC是等边三角形,E是AC延长线上一点,选择一点D,使得△CDE是等边三角形,如果M是线段AD的中点,N是线段BE的中点,求证:△CMN是等边三角形.
问题描述:
如图,已知△ABC是等边三角形,E是AC延长线上一点,选择一点D,使得△CDE是等边三角形,如果M是线段AD的中点,N是线段BE的中点,
求证:△CMN是等边三角形.
答
证明:∵△ABC是等边三角形,△CDE是等边三角形,M是线段AD的中点,N是线段BE的中点,∴∠ACB=∠ECD=60°,∴∠ACB+∠BCD=∠ECD+∠BCD,即∠ACD=∠BCE,在△ACD和△BCE中,AC=BC∠ACD=∠BCECD=CE,∴△ACD≌△BCE...
答案解析:根据△ACD≌△BCE,得出AD=BE,AM=BN;又△AMC≌△BNC,可得CM=CN,∠ACM=∠BCN,证明∠NCM=∠ACB=60°即可证明△CMN是等边三角形;
考试点:等边三角形的判定与性质;全等三角形的判定与性质.
知识点:本题考查了等边三角形的判定与性质及全等三角形的判定与性质,难度一般,熟练掌握等边三角形的性质是解答的关键.