如图,在△ABC中,AD是∠BAC平分线,AD的垂直平分线分别交AB、BC延长线于F、E.求证:(1)∠EAD=∠EDA;(2)DF∥AC;(3)∠EAC=∠B.
问题描述:
如图,在△ABC中,AD是∠BAC平分线,AD的垂直平分线分别交AB、BC延长线于F、E.求证:
(1)∠EAD=∠EDA;
(2)DF∥AC;
(3)∠EAC=∠B.
答
证明:(1)∵EF是AD的垂直平分线,∴AE=DE,∴∠EAD=∠EDA;(2)∵EF是AD的垂直平分线,∴AF=DF,∴∠FAD=∠FDA,∵AD是∠BAC平分线,∴∠FAD=∠CAD,∴∠FDA=∠CAD,∴DF∥AC;(3)∵∠EAC=∠EAD-∠CAD,∠B=∠E...
答案解析:(1)由AD的垂直平分线分别交AB、BC延长线于F、E,根据线段垂直平分线的性质,易得AE=DE,又由等边对等角的性质,证得∠EAD=∠EDA;
(2)由AD的垂直平分线分别交AB、BC延长线于F、E,可得AF=DF,又由AD是∠BAC平分线,易得∠FDA=∠CAD,即可判定DF∥AC;
(3)由三角形外角的性质,可得∠EAC=∠EAD-∠CAD,∠B=∠EDA-∠BAD,又由∠BAD=∠CAD,∠EAD=∠EDA,即可证得结论.
考试点:线段垂直平分线的性质.
知识点:此题考查了线段垂直平分线的性质以及等腰三角形的性质.此题难度适中,注意掌握数形结合思想的应用.