如图,在四边形ABCD中,AB=BC,BF是∠ABC的平分线,AF∥DC,连接AC,CF.求证:CA是∠DCF的平分线.
问题描述:
如图,在四边形ABCD中,AB=BC,BF是∠ABC的平分线,AF∥DC,连接AC,CF.求证:CA是∠DCF的平分线.
答
证明:∵BF是∠ABC的平分线,
∴∠1=∠2,
又AB=BC,BF=BF,
∴△ABF≌△CBF(SAS),
∴FA=FC,
∴∠3=∠4,
又AF∥DC,
∴∠4=∠5,
∴∠3=∠5,
∴CA是∠DCF的平分线.
答案解析:先证△ABF≌△CBF,得出AF=FC,利用等腰三角形的性质可知∠3=∠4,再利用平行线的性质可证出∠4=∠5,等量代换,可得:∠3=∠5.那么AC就是∠DCF的平分线.
考试点:全等三角形的判定与性质.
知识点:本题考查了角平分线的性质、判定,全等三角形的判定和性质;找着并利用△ABF≌△CBF是正确解答题目的关键.