如图,在△ABC中,BC=2,BC边上的高AD=1,P是BC边上任一点,PE∥AB交AC于点E,PF∥AC交AB于点F.(1)设BP=x,请写出用x表示S△PEF的表达式;(2)P在BC的什么位置时,S△PEF取得最大值?
问题描述:
如图,在△ABC中,BC=2,BC边上的高AD=1,P是BC边上任一点,PE∥AB交AC于点E,PF∥AC交AB于点F.
(1)设BP=x,请写出用x表示S△PEF的表达式;
(2)P在BC的什么位置时,S△PEF取得最大值?
答
(1)∵BC=2,BC边上的高AD=1,∴S△ABC=12×2×1=1,∵BP=x,∴PC=2-x,∵PE∥AB,∴△CEP与△CAB相似,∴S△CEPS△CAB=(2−xx)2,∴S△CEP=1−x+x24,同理,得到S△BPF=x24,∵四边形AEPF为平行四边形,∴S△PE...
答案解析:(1)首先,求解三角形ABC的面积,然后结合三角形相似,面积比等于相似比的平方,得到△CEP和△BPF的面积,再根据四边形AEPF为平行四边形,从而得到S△PEF的表达式;
(2)根据(1),结合二次函数的性质,求解最大值即可.
考试点:函数解析式的求解及常用方法;函数的最值及其几何意义.
知识点:本题结合平面几何知识综合考查建立函数解析式的能力,找准变量之间的关系是解题的关键,属于难题.