求函数f(x)=2sin(π-x)sin(π/2-x)+2根号3sin^2x-根号3的单调递减区间
求函数f(x)=2sin(π-x)sin(π/2-x)+2根号3sin^2x-根号3的单调递减区间
3sin^2x=(1-cos2a)/2
f(x)=2sin(π-x)sin(π/2-x)+2根号3sin^2x-根号3
=2sinxcosx+2根号3*(1-cos2X)/2-根号3
=sin2X+根号3*(1-cos2X)-根号3
=sin2x+根号3-根号3cos2X-根号3
=sin2x-根号3cos2X
=2(1/2*sinx-根号3/2*cos2X)
=2(sin2x*cos60度-cos2X*sin60度)
=2sin(2X-60度)
=2sin(2X-派/3)
2K派+派/22K派+5派/6所以,K派+5派/12所以,f(x)的单调递减区间为[K派+5派/12,K派+11派1/12]
不懂的欢迎追问,如有帮助请采纳,谢谢!
f(x)=2sinxcosx+√3(2sin²x-1)
=sin2x-√3cos2x
=2(1/2*sin2x-√3/2cos2x)
=2(sin2xcosπ/3-cos2xsinπ/3)
=2sin(2x-π/3)
单调减区间:2kπ+π/2即:[5π/12+kπ,11π/12+kπ]
f(x)=2sinxcosx+2√3sin²x-√3
=2sinxcosx+√3sin²x+√3(sin²x-1)
=2sinxcosx+√3sin²x-√3cos²x
=2sinxcosx+√3(sin²x-cos²x)
=sin2x-√3cos2x
=2(1/2 sin2x-√3/2 cos2x)
=2sin(2x-π/3)
sinx的单调递减区间为[π/2+2nπ,3π/2+2nπ] ,n为整数
π/2+2nπ≤2x-π/3≤3π/2+2nπ
5π/6+2nπ≤2x≤11π/6+2nπ
5π/12+nπ≤x≤11π/12+nπ
所以sin(2x-π/3)的单调递减区间为[5π/12+nπ,11π/12+nπ],即
函数f(x)=2sin(2x-π/3)的单调递减区间为[5π/12+nπ,11π/12+nπ],n∈Z