比较(x-1)(x+4)与(x+3)(x-2)+2x的大小
问题描述:
比较(x-1)(x+4)与(x+3)(x-2)+2x的大小
答
用作差法
(x-1)(x+4)-[(x+3)(x-2)+2x]=2>0
所以
(x-1)(x+4)>(x+3)(x-2)+2x
答
(x-1)(x+4)-[(x+3)(x-2)+2x]
=x²+3x-4-x²-x+6-2x
=2>0
所以(x-1)(x+4)>(x+3)(x-2)+2x
答
(x-1)(x+4)-[(x+3)(x-2)+2x]
=x²+3x-4-(x²+x-6+2x)
=2>0
∴(x-1)(x+4)>(x+3)(x-2)+2x