比较1+2x^4与2x^3+x^2的大小

问题描述:

比较1+2x^4与2x^3+x^2的大小

1+2x^4-(2x^3+x^2)
=2x^4-2x^3-(x^2-1)
=2x^3(x-1)-(x-1)(x+1)
=(x-1)(2x^3-x-1)
=(x-1)(x-1)(2x^2+2x+1)
=(x-1)^2(2(x+1/2)^2+1/2)≥0
所以
1+2x^4≥2x^3+x^2