数列极限的证明如何证明lim((n+2)/(n^2-2))sin n=0

问题描述:

数列极限的证明
如何证明lim((n+2)/(n^2-2))sin n=0

|((n+2)/(n^2-2))sin n-0|
<((n+2)/(n^2-4))sin n
=(sin n)/(n-2)
≤1/(n-2)
<(1+2)/[(n-2)+2]
=3/n

lim(n+2)/(n^2-2)=lim(1/n+2/n^2)/(1-2/n^2)=0.
又|((n+2)/(n^2-2))sin n|