求对数不等式log(1/2,x+1)-log(1/2,9x^2-1)+1
问题描述:
求对数不等式
log(1/2,x+1)-log(1/2,9x^2-1)+1
答
log(1/2,x+1)-log(1/2,9x^2-1)+1log1/2(x+1/(18x^2-2)
答
x+1>0 得x>-1
9x^2-1>0 x>1/3或x(9x^2-1)/(x+1)所以,1/3
答
log(1/2,x+1)-log(1/2,9x^2-1)+11/4
(x+1)/(9x^2-1)-1/4>0
(4x+4-9x^2+1)/[4(9x^2-1)]>0
(9x^2-4x-5)/(9x^2-1)0,x1/3
(9x^2-4x-5)
答
log(1/2,x+1)-log(1/2,9x^2-1)log[1/2,(x+1)/(9x^2-1)](x+1)/(9x^2-1)>1/4
下面自己解吧