求对数不等式log(1/2,x+1)-log(1/2,9x^2-1)+1

问题描述:

求对数不等式
log(1/2,x+1)-log(1/2,9x^2-1)+1

log(1/2,x+1)-log(1/2,9x^2-1)+1log1/2(x+1/(18x^2-2)1/81/8(x+1)/(18x^2-2)定义域:x+1>0,9x^2-1>0,x>1/3或-1〈x求出来的x的范围跟x的定义域的交集就是x的取值范围

x+1>0 得x>-1
9x^2-1>0 x>1/3或x(9x^2-1)/(x+1)所以,1/3

log(1/2,x+1)-log(1/2,9x^2-1)+11/4
(x+1)/(9x^2-1)-1/4>0
(4x+4-9x^2+1)/[4(9x^2-1)]>0
(9x^2-4x-5)/(9x^2-1)0,x1/3
(9x^2-4x-5)

log(1/2,x+1)-log(1/2,9x^2-1)log[1/2,(x+1)/(9x^2-1)](x+1)/(9x^2-1)>1/4
下面自己解吧