利用等价无穷小的性质,求极限 lim(x趋于0)sin(x的n次方)/(sinx)的m次方 (n,m为正整数)

问题描述:

利用等价无穷小的性质,求极限 lim(x趋于0)sin(x的n次方)/(sinx)的m次方 (n,m为正整数)

当n=m时,x趋于0时,sin(x^n)/sin(x^m)=1,当n>m时,x趋于0时,上下两式均=0,由洛比达法则上下分别求导,即nx^(n-1)cos(x^n)/mx^(m-1)cosx^m=nx^(n-1)/mx^(m-1),再分析,上下还是为0,所以要继续使用洛比达法则,那么忧郁n>...