已知圆C的方程为x^2+y^2-2x-4y+m=0,若圆C与直线l:x+2y-4=0相交于M,N两点且OM⊥ON,求m的值和以MN为直径的圆的方程.(重点第二问!)

问题描述:

已知圆C的方程为x^2+y^2-2x-4y+m=0,若圆C与直线l:x+2y-4=0相交于M,N两点且OM⊥ON,
求m的值和以MN为直径的圆的方程.(重点第二问!)

.⒈设M(x₁,y₁)N(x₂,y₂)
∵OM⊥ON
∴x₁x₂+y₁y₂=0…………①
联立两方程式,消y,由韦达定理得
5x²-24x+48+4m=0
x₁x₂=(48+4m)/5
由纵横坐标变换
y₁y₂=﹙x₁-4﹚﹙χ₂-4﹚/4=χ₁χ₂/4-﹙χ₁+χ₂﹚+4
由韦达定理
x₁+x₂=24/5
则y₁y₂=·······
由①式得m=…………
⒉由第一问求得圆方程式,设C半径R,以MN为直径圆半径r
∵OM⊥ON
∴r=√2R
圆心坐标﹙﹙x₁+x₂﹚/2,﹙y₁+y₂﹚/2﹚
由韦达定理及圆标准方程,带入圆心及半径即可
(我不想算了,抱歉!)

x^2+y^2-2x-4y+m=0和x+2y-4=0联立得5y^2-16y+m+8=0利用韦达定理y1+y2=16/5y1*y2=(8+m)/5利用直线方程x1*x2=(4-2y1)*(4-2y2)=16-8(y1+y2)+4y1*y2=4m/5-16/5又OM⊥ON所以x1*x2+y1*y2=4m/5-16/5+(8+m)/5=m-8/5=0 所以m=...