已知定义的R上的函数f(x)满足f(x)=f(4-x),又函数f(x+2)在[0,+∞)单调递减.(1)求不等式f(3x)>f(2x-1)的解集;(2)设(1)中的解集为A,对于任意t∈A时,不等式x2+(t-2)x+1-t>0恒成立,求实数x的取值范围.
问题描述:
已知定义的R上的函数f(x)满足f(x)=f(4-x),又函数f(x+2)在[0,+∞)单调递减.
(1)求不等式f(3x)>f(2x-1)的解集;
(2)设(1)中的解集为A,对于任意t∈A时,不等式x2+(t-2)x+1-t>0恒成立,求实数x的取值范围.
答
知识点:本题考查的知识点是函数单调性的性质,二次函数的性质,其中(1)的关键是判断出函数图象的对称轴,进而判断出函数的单调性,(2)的关键是将不等式恒成立问题转化为解不等式组问题.
(1)∵f(x)=f(4-x)∴f(x)图象关于直线x=2对称又∵f(x+2)在[0,+∞)上单调递减∴f(x)在[2,+∞)上单调递减∴不等式f(3x)>f(2x-1)等价于:|3x-2|<|2x-1-2|⇔(3x-2)2<(2x-3)2⇔(5x-5)(x+1)...
答案解析:(1)由已知中定义的R上的函数f(x)满足f(x)=f(4-x),可得直线x=2是函数图象的对称轴,又函数f(x+2)在[0,+∞)单调递减我们易判断出函数的单调性,进而根据函数的单调性可将不等式f(3x)>f(2x-1)转化为一个绝对值不等式,进而得到答案.
(2)由(1)易得参数t的取值范围,根据二次函数的图象和性质,我们可以构造出关于x的不等式组,解不等式组即可求出实数x的取值范围.
考试点:函数单调性的性质;二次函数的性质.
知识点:本题考查的知识点是函数单调性的性质,二次函数的性质,其中(1)的关键是判断出函数图象的对称轴,进而判断出函数的单调性,(2)的关键是将不等式恒成立问题转化为解不等式组问题.