数学题1111111111一个圆锥的高是3*根号3,它的侧面展开图是一个半园,求这个圆锥的侧面积?
问题描述:
数学题1111111111
一个圆锥的高是3*根号3,它的侧面展开图是一个半园,求这个圆锥的侧面积?
答
半圆的半径是圆锥的斜边x 半圆的曲线长是圆锥的底面周长pai*x
所以底面圆半径x/2 与高 斜边x构成直角三角形
答
设 圆锥 底面圆半径为r 侧面半圆半径为R
半圆周长为πR 底面圆半径为2πr
πR=2πr
所以 R=2r
圆锥侧视图 直角三角形 斜边为R也就是2r 两直角边为 3倍根号3 和 r
得(3倍根号3)^2+r^2=(2r)^2
解得 r=3
圆锥侧面面积为 S=πR=2πr=2*3.14*3=18.84
答
设半圆的半径为R,则圆锥的边长为R,
则半圆的弧长为∏R.
则圆锥的底面半径为∏R/2∏=R/2
所以同勾股定理有等式:27=R^2+(R/2)^2
得R^2=21.6
所以圆锥的侧面积为2∏R^2/2=21.6∏