已知公差大于零的等差数列{an}的前n项和为Sn,且满足:a3•a4=117,a2+a5=22.(1)求数列{an}的通项公式an;(2)若数列{bn}是等差数列,且bn=Snn+c,求非零常数c.

问题描述:

已知公差大于零的等差数列{an}的前n项和为Sn,且满足:a3•a4=117,a2+a5=22.
(1)求数列{an}的通项公式an
(2)若数列{bn}是等差数列,且bn

Sn
n+c
,求非零常数c.

(1)an为等差数列,a3•a4=117,a2+a5=22
又a2+a5=a3+a4=22
∴a3,a4是方程x2-22x+117=0的两个根,d>0
∴a3=9,a4=13

a1+2d=9
a1+3d=13

∴d=4,a1=1
∴an=1+(n-1)×4=4n-3
(2)由(1)知,sn=n+
n(n−1)×4
2
=2n2−n

bn
sn
n+c
2n2−n
c+n

b1
1
1+c
b2
6
2+c
b3
15
3+c

∵bn是等差数列,∴2b2=b1+b3,∴2c2+c=0,
c=−
1
2
(c=0舍去)
答案解析:(1)利用等差数列的性质可得
a2+a5a3+a4=22
a3a4 =117
,联立方程可得a3,a4,代入等差数列的通项公式可求an
(2)代入等差数列的前n和公式可求sn,进一步可得bn,然后结合等差数列的定义可得2b2=b1+b3,从而可求c
考试点:等差数列的通项公式;等差数列的前n项和.
知识点:本题主要考查了等差数列的定义、性质、通项公式、前n项和公式的综合运用,以及构造法的运用,是一道综合性很好的试题.