数列{an}的通项an=n2(cos2(n派/3)-sin(2n派/3),其前n项和为Sn(1)求Sn(2)令bn=S3n/(n乘以4的n次方),求数列{bn}的前n项和Tn是“数列{an}的通项an=n的平方*[(cos(n派/3)的平方-sin(n派/3)的平方],其前n项和为Sn”

问题描述:

数列{an}的通项an=n2(cos2(n派/3)-sin(2n派/3),其前n项和为Sn
(1)求Sn
(2)令bn=S3n/(n乘以4的n次方),求数列{bn}的前n项和Tn
是“数列{an}的通项an=n的平方*[(cos(n派/3)的平方-sin(n派/3)的平方],其前n项和为Sn”