泰勒公式中关于佩亚诺余项的问题

问题描述:

泰勒公式中关于佩亚诺余项的问题
我看到书上写sinx = x - x3/6 + o(x3),而且sinx= x - x3/6 + o(x4)也成立,请问为什么两个都可以
还有e的x2 = 1 + x2 + x4/2 + o(x5) 可以写为1 + x2 + x4/2 + o(x4)吗?
我想搞清楚的是泰勒展开式中的佩亚诺余项是如何求的呢?
我想知道如果一个函数f(x)展开到x^n,那么佩亚诺余项一定是o(x^n)吗?

sinx=x-x3/6+o(x3) 和 sinx=x-x3/6+o(x4) 都可以.
因为sinx的泰勒公式的下一项是x5/5!,它比x3、x4都高阶,所以这个地方写o(x3)还是o(x4)都可以.
不过如果题目是让你写出sinx的泰勒公式,这个地方还是根据前面展开式的最后一项-x3/6决定使用o(x3).如果使用泰勒公式求极限,那么最后是用o(x3)还是o(x4)要根据题目决定.
类似地,e的x2 =1+x2+x4/2+o(x5) 和 1+x2+x4/2+o(x4)都可以.因为e的x2的泰勒公式的下一项是x6/6,比x4、x5都高阶.
一般地,如果一个函数f(x)展开到x^n,佩亚诺余项写作o(x^n).