f(x)=2sinxcos(3π/2+x)+√3sin(π+x)*cosx+sin(π/2-x)*cosx-1/2(1)求最小正周期和值域(2)写出函数f(x)取得最大值时x的集合(3)求f(x)的单调递增区间
问题描述:
f(x)=2sinxcos(3π/2+x)+√3sin(π+x)*cosx+sin(π/2-x)*cosx-1/2
(1)求最小正周期和值域
(2)写出函数f(x)取得最大值时x的集合
(3)求f(x)的单调递增区间
答
(1)
f(x)=2sinxsinx+√3(-sinx)cosx+cosxcosx-1/2
=(1-cos2x)-√3/2sin2x+1/2(1+cos2x)-1/2
=1-1/2cos2x-√3/2sin2x+1/2-1/2
=1-sin(2x+π/6)
T=2π/2=π
y(MAX)=2
y(min)=0
值域为;
[0,2]
(2)
当sin(2x+π/6)=-1
2x+π/6= - π/2+2kπ==>x= - π/3+kπ时,函数取最大值,
最大值的集合:
{x| x= - π/3+kπ,k∈z}
当
当sin(2x+π/6)=1
2x+π/6= π/2+2kπ==>x= π/6+kπ时,函数取最小值,
最小值的集合:
{x| x=π/6+kπ,k∈z}
(3)
把中间变量 :2x+π/6代入到标准函数的单调减区间中去解出单调增区间的过程:
π/2+2kπ≤2x+π/6≤3π/2+2kπ
π/6+kπ≤ x ≤2π/3+kπ
所以原函数的间调增区间是:
[π/6+kπ ,2π/3+kπ]