函数y=2sin(2x+π/3)+sin(2x-π/3)的最小正周期
问题描述:
函数y=2sin(2x+π/3)+sin(2x-π/3)的最小正周期
答
y=2sin(2x+π/3)+sin(2x-π/3)=√3sin(2x+φ)所以最小正周期为π
答
y=2sin(2x+π/3)+sin(2x-π/3)=sin(2x+π/3)+sin(2x-π/3)+sin(2x+π/3)=sin2x+sin(2x+π/3)=3/2sin2x+√3/2cos2x=√3sin(2x+π/6),所以最小正周期为π