在三角形ABC中,若acosB+bcosC+ccosA=bcosA+ccosB+acosC求三角形的形状?
问题描述:
在三角形ABC中,若acosB+bcosC+ccosA=bcosA+ccosB+acosC求三角形的形状?
答
在三角形ABC中,若acosB+bcosC+ccosA=bcosA+ccosB+acosC求三角形的形状?
方程变形为(a-c)cosB+(b-a)cosC+(c-b)cosA=0.因为cosA=cos[π-(B+C)]=-cos(B+C)=sinBsinC-cosBcosC,a=√[bb+cc-2bccosA]=√[bb+cc-2bc(sinBsinC-cosBcosC)],故上式变为(√[bb+cc-2bc(sinBsinC-cosBcosC)]-c)cosB+(b-√[bb+cc-2bc(sinBsinC-cosBcosC)])cosC+(c-b)(sinBsinC-cosBcosC)=0.
稍后.