已知α,β为锐角,3sin^2α+2sin^2β=1 3sin2α-2sin2β=0 求2α+2β的值
问题描述:
已知α,β为锐角,3sin^2α+2sin^2β=1 3sin2α-2sin2β=0 求2α+2β的值
答
3(sinα)^2+2(sinβ)^2=1.(1)
3[1-(cosα)^2]+2[1-(cosβ)^2]=1
3(cosα)^2+2(cosβ)^2=4.(2)
(2)-(1),得:
3cos2α+2cos2β=3 .(3)
3sin2α-2sin2β=0 .(4)
(3)^2+(4)^2,得:
9+4+12(cos2αcos2β-sin2αsin2β)=9
cos(2α+2β)=cos2αcos2β-sin2αsin2β=-1/3
α,β为锐角
0