如图,△ABC是直角三角形,∠ACB=90°,PA⊥平面ABC,此图形中有______个直角三角形.

问题描述:

如图,△ABC是直角三角形,∠ACB=90°,PA⊥平面ABC,此图形中有______个直角三角形.

由PA⊥平面ABC,则△PAC,△PAB是直角三角形,又由已知△ABC是直角三角形,∠ACB=90°所以BC⊥AC,从而易得BC⊥平面PAC,所以BC⊥PC,所以△PCB也是直角三角形,
所以图*有四个直角三角形,即:△PAC,△PAB,△ABC,△PCB.
故答案为:4
答案解析:本题利用线面垂直,判定出线线垂直,进而得到直角三角形,只需证明直线BC⊥平面PAC问题就迎刃而解了.
考试点:棱锥的结构特征.
知识点:本题考查空间几何体的结构特征,空间中点线面的位置关系,线面垂直的判定定理和性质定理的熟练应用是解答本题的关键.