函数y=sin2x+根号3cos2x的最大值是多少
问题描述:
函数y=sin2x+根号3cos2x的最大值是多少
答
y=sin2x+√3cos2x
=2(1/2sin2x+√3/2cos2x)
=2(cosπ/3sin2x+sinπ/3cos2x)
=2sin(2x+π/3)
所以可得最大值为:2
答
y=sin2x+根号3cos2x
=2(1/2sin2x+√3/2cos2x)
=2(sin2xcos60+cos2xsin60)
=2(sin(2x+60))
∵sin(2x+60)的最大值是1
∴y的最大值是2