如图,已知二次函数y=ax2-4x+c的图象经过点A和点B.(1)求该二次函数的表达式;(2)写出该抛物线的对称轴及顶点坐标;(3)点P(m,m)与点Q均在该函数图象上(其中m>0),且这两点关于抛物线的对称轴对称,求m的值及点Q到x轴的距离.

问题描述:

如图,已知二次函数y=ax2-4x+c的图象经过点A和点B.

(1)求该二次函数的表达式;
(2)写出该抛物线的对称轴及顶点坐标;
(3)点P(m,m)与点Q均在该函数图象上(其中m>0),且这两点关于抛物线的对称轴对称,求m的值及点Q到x轴的距离.

(1)将x=-1,y=-1;x=3,y=-9,
分别代入y=ax2-4x+c

−1=a×(−1)2−4×(−1)+c
−9=a×32−4×3+c

解得
a=1
c=−6

∴二次函数的表达式为y=x2-4x-6.
(2)对称轴为x=2;
顶点坐标为(2,-10).
(3)将(m,m)代入y=x2-4x-6,得m=m2-4m-6,
解得m1=-1,m2=6.
∵m>0,
∴m1=-1不合题意,舍去.
∴m=6,
∵点P与点Q关于对称轴x=2对称,
∴点Q到x轴的距离为6.
答案解析:(1)根据图象可得出A、B两点的坐标,然后将其代入抛物线的解析式中即可求得二次函数的解析式.
(2)根据(1)得出的抛物线的解析式,用配方法或公式法即可求出对称轴和顶点坐标.
(3)将P点坐标代入抛物线的解析式中,即可求出m的值,P,Q关于抛物线的对称轴对称,那么两点的纵坐标相等,因此P点到x轴的距离同Q到x轴的距离相等,均为m的绝对值.
考试点:二次函数综合题.
知识点:本题考查二次函数的有关知识,通过数形结合来解决.