已知椭圆a2/X2+Y2/b2=1(a>b>0)的离心率e=根号3/2,连接椭圆的四个顶点得到的菱形的面积为4求椭圆方程
问题描述:
已知椭圆a2/X2+Y2/b2=1(a>b>0)的离心率e=根号3/2,连接椭圆的四个顶点得到的菱形的面积为4求椭圆方程
答
离心率e=√3/2 设b=x 则 有a^2=b^2+c^2 得a=2x
根据题意知
菱形的面积可写为
2ab=4x*x=4 得x=1 即b=1 a=2
∴方程为x^2/4+y^2=1