已知双曲线C的渐近线是4x±3y=0,一条准线为y=16/15,求此双曲线的方程

问题描述:

已知双曲线C的渐近线是4x±3y=0,一条准线为y=16/15,求此双曲线的方程

渐近线y=±(4/3)x
所以b/a=4/3
b=4a/3
准线y=16/15
则焦点在y轴且a^2/c=16/15
a^2=c^2-b^2=c^2-16a^2/9
所以25a^2/9=c^2
a^2=9c^2/25
所以(9c^2/25)/c=16/15
c=80/27
c^2=6400/729
a^2=9c^2/25=256/81
b^2=16a^2/9=4096/729
所以729y^2/4096-81x^2/256=1