函数y=tan(x+派/3)的定义域
问题描述:
函数y=tan(x+派/3)的定义域
答
{x|x+π/3≠kπ+π/2|(k∈Z)}
定义域为A={x|x≠kπ+π/6(k∈Z)}
答
x+π/3≠kπ+π/2
解得
x≠kπ+π/6
答
y=tan(x+π/3)
令x+π/3≠kπ+π/2,k∈Z
得x≠kπ+π/6,k∈Z
所以函数y=tan(x+π/3)的定义域是{x|x≠kπ+π/6,k∈Z}
答
y=tan(x+派/3)
kπ-π/2