设f(n)=1/(n+1)+1/(n+2)+1/(n+3)+…+1/(n+2^n),则f(k+1)-f(k)=

问题描述:

设f(n)=1/(n+1)+1/(n+2)+1/(n+3)+…+1/(n+2^n),则f(k+1)-f(k)=
是2的n次方不是2n啊

f(n)=1/(n+1)+1/(n+2)+1/(n+3)+…+1/(n+2n),f(n+1)=1/(n+2)+1/(n+3)+…+1/(n+2n)+1/(n+2n+1)
f(n+1)-f(n)=1/(n+2n+1)-1/(n+1)