已知正三角形OAB的三个顶点都在抛物线y^2=2x上,其中O为坐标原点,设圆C是三角形OAB的外接圆

问题描述:

已知正三角形OAB的三个顶点都在抛物线y^2=2x上,其中O为坐标原点,设圆C是三角形OAB的外接圆
(1)求圆的方程
(2)设圆M的方程是(x-4-7cosθ)^2+(y-7sinθ)^2=1过M上任意一点P分别作圆C的两条切线PE,PF,切点为E,F,求向量CE乘以向量CF的最大值,最小值

1)设A(y²/2,y)B(y²/2,-y)根据OA=AB☞y=2√3,AB=4√3根据正弦定理2R=AB/sin∠AOB=8,R=4那么目标:(x-4)²+y²=16①(II)设∠ECF=2a,向量CE*向量CF=16cos2a=32cos²a-16在RT△PCE中,cosa=r...