已知正三角形OAB的三个顶点都在抛物线y的平方=2x上,其中O为坐标原点,设圆C是OAB的内接圆(点C为圆点),求圆C的方程.
问题描述:
已知正三角形OAB的三个顶点都在抛物线y的平方=2x上,其中O为坐标原点,设圆C是OAB的内接圆(点C为圆点),求圆C的方程.
答
正三角形落在Y^2=2x上,则,抛物线过(x,x/根号3),解得x=0或6,0为原点,x=6为垂直于x轴的那条边.内接圆心在2/3处,故圆心(4,0).半径为2,所以方程(x-4)^2+y^2=4