已知函数f(x)是定义域为R的奇函数,当x>0时f(x)=4x-mx,且f(2)=2f(-1),则实数m的值等于( ) A.0 B.6 C.4 D.2
问题描述:
已知函数f(x)是定义域为R的奇函数,当x>0时f(x)=4x-mx,且f(2)=2f(-1),则实数m的值等于( )
A. 0
B. 6
C. 4
D. 2
答
∵函数f(x)是定义域为R的奇函数,∴f(-1)=-f(1),
故f(2)=2f(-1)=-2f(1),
又当x>0时f(x)=4x-mx,
故42-2m=-2(41-m),解得m=6
故选B