设△ABC是锐角三角形,abc分别是内角,ABC所对边长,并且Sin2A=sin(π/3+设△ABC是锐角三角形,abc分别是内角,ABC所对边长,并且Sin2A=sin(π/3+B)Sin(π/3-B)+sin2B 求角A的大小
问题描述:
设△ABC是锐角三角形,abc分别是内角,ABC所对边长,并且Sin2A=sin(π/3+
设△ABC是锐角三角形,abc分别是内角,ABC所对边长,并且Sin2A=sin(π/3+B)Sin(π/3-B)+sin2B 求角A的大小
答
sin²A=sin(π/3+B)sin(π/3-B)+sin²B
=(sinπ/3 cosB+cosπ/3 sinB)(sinπ/3 cosB-cosπ/3 sinB)+sin²B
=(sinπ/3cosB)²-(cosπ/3sinB)²+sin²B
=3cos²B/4-sin²B/4+sin²B
=(3cos²B+3sin²B)/4
=3/4
∵△ABC是锐角三角形 即A为锐角
∴sinA=√3/2
∴A=π/3