设△ABC是锐角三角型,a,b,c分别是内角A,B,C所对边长,并且sni^2A=sin(π/3+B)sin (π/3-B)+sin^2B,求角A
问题描述:
设△ABC是锐角三角型,a,b,c分别是内角A,B,C所对边长,并且sni^2A=sin(π/3+B)sin (π/3-B)+sin^2B,求角A
若向量AB•向量AC=12,a=2√7,求b,c(其中b<c
答
sin^2A=sin(π/3+B)sin(π/3-B)+sin^2B=-1/2[cos(2π/3)-cos2B]+sin^2B=1/4+1/2=3/4sinA=(根号3)/2,A=60度若向量 AB.AC=12,那么cb=24又a^2=28=b^2+c^2-2bccosA=b^2+c^2-24所以b^2+c^2=52,结合bc=24,b...