在正方形ABCD中,作∠EAF=45°,AE交CD于点E,AF交BC于F,AP⊥EF于点P.求证:AP=AB
问题描述:
在正方形ABCD中,作∠EAF=45°,AE交CD于点E,AF交BC于F,AP⊥EF于点P.求证:AP=AB
答
证明:
延长CB到G,是BG=DE,连接AG
∵AB=AD,∠ADE=∠ABG=90º
∴⊿ADE≌⊿ABG(SAS)
∴AE=AG,∠DAE=∠BAG
∵∠EAF=45º,∠DAB=90º
∴∠DAE+∠BAF=∠DAB-∠EAF=45º
∴∠GAF=∠GAB+∠BAF=45º
∴∠EAF=∠GAF
又∵AF=AF
∴⊿EAF≌⊿GAF(SAS)
∴EF=FG
∵AP⊥EF,AB⊥FG
∴AP=AB【全等三角形对应边上的高相等】