化简:sin(α+β)-2sinαcosβ/2sinαsinβ+cos(α+β)

问题描述:

化简:sin(α+β)-2sinαcosβ/2sinαsinβ+cos(α+β)

[sin(α+β)-2sinαcosβ]/[2sinαsinβ+cos(α+β)]
=(sinαcosβ+cosαsinβ-2sinαcosβ)/(2sinαsinβ+cosαcosβ-sinαsinβ)
=(cosαsinβ-sinαcosβ)/(sinαsinβ+cosαcosβ)
=sin(β-α)/cos(β-α)
=tan(β-α)

sinαcosβ+cosαsinβ-2sinαcosβ/2sinαsinβ+cosαcosβ-sinαsinβ
=-1

原式=(sinacosb+cosasinb-2sinacosb)/(2sinasinb+cosacosb-sinasinb)
=(sinbcosa-sinacosb)/(cosacosb+sinasinb)
=sin(b-a)/cos(a-b)
=-sin(a-b)/cos(a-b)
=-tan(a-b)